Novel Biocatalyst Development and Their Application Methodology

Roland Wohlgemuth
Overview

Introduction
Epoxidehydrolases
Alcoholdehydrogenases/Ketoreductases
Transketolases
Kinases
Dehydratases
Outlook
Manufacturing Performance, Selectivity, Sustainability by Molecular Economy

Revitalizing Old Routes

Finding New Routes
Epoxidehydrolases
Selective Biocatalytic Epoxide Hydrolysis

Epoxide Hydrolase Catalyzed Resolutions of (+)- and (−)-cis/trans-Limonene Oxides

Solvent-free preparative resolution of (+)- and (-)-limonene oxide mixtures catalyzed by LEHs after process optimization\(^a\)

<table>
<thead>
<tr>
<th>Process parameter</th>
<th>(+)-Limonene oxide</th>
<th>(-)-Limonene oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: Re-LEH</td>
<td>F: Tomsk-LEH</td>
<td>G: CH55-LEH</td>
</tr>
<tr>
<td>H: Re-LEH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>substrate volume [mL]</td>
<td>6.55</td>
<td>1.64</td>
</tr>
<tr>
<td>substrate total amount [g]</td>
<td>6.09</td>
<td>1.52</td>
</tr>
<tr>
<td>substrate loading [mol L(^-1)]</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>enzyme [mg mL(^-1)]</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>reaction temperature [°C]</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>reaction time [h]</td>
<td>4.5</td>
<td>24</td>
</tr>
<tr>
<td>epoxide yield [%](^b)</td>
<td>44 (2)</td>
<td>33 (1)</td>
</tr>
<tr>
<td>diol yield [%](^c)</td>
<td>40 (3)</td>
<td>59 (3)</td>
</tr>
<tr>
<td>STY(^{d,e}) [mmol L(^-1) h(^-1)]</td>
<td>167.3</td>
<td>6.6</td>
</tr>
<tr>
<td>specific productivity [µmol mg(^-1) h(^-1)](^e)</td>
<td>837</td>
<td>9.4</td>
</tr>
<tr>
<td>ECN(^e,f) [mg mmol(^-1)]</td>
<td>0.26</td>
<td>4.4</td>
</tr>
</tbody>
</table>

\(^a\) Reactions (20 mL) performed in KP\(_i\) buffer (pH 8.0). \(^b\) Recovery yield estimated based on the unreacted epoxide isomer indicated in brackets. \(^c\) Recovery yield estimated based on the formed diol indicated in brackets. \(^d\) STY: space-time yield. \(^e\) Calculated based on epoxide recovery. \(^f\) ECN: enzyme consumption number.
Alcoholdehydrogenases/Ketoreductases
Selective Biocatalytic Reductions

Retrosynthetic Analysis in the Biodomain for D- and L-Lactaldehyde
Enantiomerically Pure and Stable Lactaldehydes

Enantiomer Analysis of D- and L-Lactaldehyde

Transketolases
Transketolases for Biocatalytic C2-Chain Elongation

Modular Microfluidic Reactor and Inline Filtration System

Output = Pure Product

B.O’Sullivan et al., Journal of Molecular Catalysis B: Enzymatic 77 (2012) 1–8
Synthesis of L-Erythrulose in Microfluidic Reactor using Transketolase (TK)

- Full conversion achieved in the microfluidic reactor.
- Conversion rate in microfluidic reactor is slightly faster than in the microwell batch reactor.
- Further work will investigate non-specific adsorption of Transketolase (TK) onto the microchannel surface.
- The mass balance of product formation and substrate disappearance corresponds to initial substrate concentration.

50 mM substrates
0.65 mg/ml E. coli transketolase (TK) wild type (WT)
2.4 mM thiamine pyrophosphate (TPP)
9.8 mM MgCl₂

Room temperature, pH 7

Error bars represent standard deviation from three experiments.
Synthesis of PKD in Microfluidic Reactor using Transketolase

- Model reaction system with a more hydrophobic substrate yielding (3S)-1,3-dihydroxypentan-2-one (PKD).
- 50 mM substrates
- 0.56 mg/mL E. coli transketolase mutant D469T
- 2.4 mM thiamine pyrophosphate (TPP)
- 9.8 mM MgCl₂

40°C, pH 7

- Demonstrate microfluidic enzymatic reactor accepts substrates of different hydrophobic properties and underpins applicability of the reactor for organic synthesis
- High conversion to product measured.
- Rate of conversion to PKD in the microfluidic reactor slightly faster than in the batch reactor.

B.O’Sullivan et al., Journal of Molecular Catalysis B: Enzymatic 77 (2012) 1–8
Multi-Input Reactor (MIR) Setup

200 mM HPA

- HPA / TK / co-factors fed through primary, comingled with first GA input
- Residence time chosen according to model estimation of complete conversion
- Position of further inputs selected to best match those predictions of depletion in model

Kinases
Biocatalytic Asymmetric Phosphorylation

Time course of 5-Phosphomevalonate concentration [MVAP] in the enzymatic phosphorylation reaction by 31P-NMR

- [MVAP] from R-mevalonolactone
- [MVAP] from racemic R,S-mevalonolactone
- [MVAP] from S-mevalonolactone

R. Matsumi et al., RSC Advances, 4(25), 12989-12994 (2014)

Mevalonate kinase from Thermococcus kodakaraensis TK1474, overexpressed in E.coli
Reducing the Number of Reaction Steps in Synthesis

R. Matsumi et al., RSC Advances, 4(25), 12989-12994 (2014)
Biocatalytic Asymmetric Synthesis of D-GAP and L-GAP and Enantiomer Analysis

D-GAP

D-Glyceraldehyde-3-phosphate (D-GAP)

L-GAP

D.Gauss, B.Schoenenberger, R.Wohlgemuth, Carbohydrate Res. 389, 18-24 (2014);
D.Gauss et al. (2015) in press
Expanding Phosphorylated Metabolites

B. Schönenberger et al.

N. Hardt et al.
Dehydratases
One-Step Enzymatic Synthesis of 2-Keto-3-deoxy-gluconate (KDG)

Navigation Tools for Biocatalysts
Enzyme Explorer

Find enzymes / proteins, substrates, activators, and inhibitors. Resources for metabolic pathways, kinases, proteolytic enzymes and inhibitors, carbohydrate analysis as well as new cell signaling, analytical and diagnostic enzymes and detection reagents.

https://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer.html

Metabolic Pathways

http://www.sigmaaldrich.com/life.science/metabolomics.html
Micro- and Macroscale Analytical Modes

Micro- and Macroscale Manufacturing Modes

Acknowledgements

Dr. Rudi Köhling
Dr. Bernhard Schönenberger
Dr. Dominik Gauss
Dr. Norman Hardt
Roland Meier
Thomas Milesi
Namtso Reichlin
Dr. Christine Hellriegel
Dr. Michael Vogel
Hanspeter Burger
Nadin Schläger
Dr. Tom Bisschops
Prof. Andreas Liese (TU Hamburg)
Getachew Molla (TU Hamburg)
Dr. Jennifer Chow (Univ. Hamburg)
Prof. Wolfgang Streit (Univ. Hamburg)
Birhanu Kinfu (Univ. Hamburg)
Dr. Rie Matsumi (WU, NL)
Prof. John van der Oost (WU, NL)
Dr. Stefanie Kind (evocatal)
Dr. Thorsten Eggert (evocatal)
Dr. Henrieke Brundiek (Enzymicals)
Agata Wszolek (Enzymicals)

Prof. John Ward (UCL)
Prof. Nicolas Szita (UCL)
Dr. Brian O’Sullivan (UCL)
Prof. Nicolas Szita (UCL)
Dr. James Laurence (UCL)
Prof. Frank Baganz (UCL)
Prof. John Woodley (DTU)
Dr. Kohei Matsubara (U Duisburg)
Prof. Bettina Siebers (U Duisburg)
Dr. Teresa Kouril (U Duisburg)
Dr. Dominik Esser (U Duisburg)
Dr. Christoph Bräsen (U Duisburg)
Prof. J. Littlechild (U Exeter)
Dr. Chris Sayer (U Exeter)
Dr. Michail Isupov (U Exeter)
Dr. E. Bonch-Osmolovskaya (RAS)
Dr. Daniela Monti (CNR Milano)
Dr. Sergio Riva (CNR Milano)
Dr. Erica Ferrandi (CNR Milano)
Carlotta Marchesi (CNR Milano)
Celeste Annovazzi (CNR Milano)

EU FP7-Project Hotzyme
EU FP7-Project Biointense